Tutorial Questions

Computer Programming and Applications

Q1. Design a FORTRAN program that reads an input temperature in degrees Fahrenheit, converts it to an absolute temperature in Kelvins, and writes out the results. Use IMPLICIT NONE statement and TYPE declaration statement in your program.

Q2. Write an algorithm for Newton Raphson Method. Give its limitations.
Q3. Write a Fortran program to compute potential temperature of a given sample of air of 500 hpa Level and temperature - 10.0 deg. C which is compressed adiabatically to a Pressure of 1000 hPa Level.

Q4. Given $g=-G\left(M /(R+h)^{2}\right)$ where g is acceleration due to earth's gravity at a height h above the surface of the earth, $\mathrm{G}=6.6272 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{Kg}^{2}$ is gravitational constant, $\mathrm{M}=5.98 \times 10^{24} \mathrm{~kg}$ is mass of earth, $\mathrm{R}=6371 \mathrm{~km}$ is mean radius of earth. Write a Fortran Program to calculate the acceleration due to earth's gravity in 500 Km increment at heights from 0 to $40,000 \mathrm{~km}$ above the surface of the earth. Print out the results in a Table.

Q5 Fill in the blanks. Attempt any 4.

1. Fortran $90 / 95$ is a free source form, where each line of Fortran statement may be up to
\qquad characters long.
2. $A \$$ is an \qquad variable name because \qquad .
3. 111 E 3 is not a valid real constant because \qquad _.
4. The arithmetic operator is \qquad used as Exponentiation in Fortran 90/95.
5. Example of Character Constant is \qquad _.
6. In Fortran Hierarchy of operations, the topmost Hierarchy is \qquad .
a)operations within parenthesis is evaluated first, starting with the inner parenthesis and working outward.
b) All exponentials are evaluated from right to left.
c) All multiplications and division are evaluated from left to right
d)All relational operators are evaluated from left to right
e) All .NOT. operators are evaluated
f) All .AND. operators are evaluated from left to right
g) All .OR. operators are evaluated from left to right
h) All .EQV. and .NEQV. operators are evaluated from left to right
i) None of the above
7. A flowchart Parallelogram indicates an \qquad or \qquad operation.

Q6. State true or false with reason. Attempt any 3.

1. Never raise a negative number to a real power.
2. The relational operator $==$ can be used in assignment statement.
3. $3 / 10$ is 0 in Fortran $90 / 95$
4. Always use Implicit none statements in the program
5. The value of the expression $(13 / 5)^{*} 6$ is 12

Q7. Write short notes. Attempt any 2.

1. Flowcharts in Fortran 90/95
2. Advantages of Fortran $90 / 95$

FORTRAN PROGRAMS

EXAMPLE 1 Convert a temperature from Centigrade to Fahrenheit.

! Program for Centigrade to Fahrenheit
Program centi_Fahren
Implicit none
Real :: C, F
Print *, 'Please Type the value of Temperature in Centigrade'
Read(*,*) C
$F=C * 9.0 / 5.0+32.0$
Write(*, "(1x,'Temperature in Fahrenheit is', f10.3)") F
End program centi_Fahren

EXAMPLE 2 To find the slope and Midpoint of a Line
! Program to find the slope and Midpoint of a line
Program slope_midpoint
Implicit none
Real :: x1, y1, x2, y2, slope, X, Y
Print *, 'Please Type the first point $\mathrm{x} 1, \mathrm{y} 1$ '
Read(*,*) x1, y1
Print *, 'Now Please Type the second point $\mathbf{x 2}$, y2'
Slope = (y2-y1) / (x2 - x1)
$\mathrm{X}=(\mathrm{x} 1+\mathrm{x} 2) / 2.0$
$\mathrm{Y}=(\mathrm{y} \mathbf{1}+\mathrm{y} \mathbf{2}) / 2.0$
Write(*, "(1x,'Slope is', f10.3,/,'Midpoint is',1x,2(f10.3,1x))") Slope, X, Y
End program slope_midpoint

EXAMPLE 3 Area of a Triangle.
! Program for finding Area of a Triangle
Program Area_Triangle
Implicit none
Real :: A, B, C, S, Area
Print *, 'Please Type the sides of a Triangle A, B, C’
Read(*,*) A, B, C
$S=(A+B+C) / 2.0$
Area $=\operatorname{SQRT}(S *(S-A) *(S-B) *(S-C))$
Write(*, "($1 x$,'Area of the Triangle is ', f10.3)") Area
End program Area_Triangle

EXAMPLE $4 \quad$ Velocity and Distance of a Particle.
! Program to find velocity and distance of a particle
Program Vel_Distance
Implicit none
Real :: a, t, S, V
Print *, 'Please Type acceleration a and time t of a particle’
Read(*,*) a, t
$\mathrm{S}=(1.0 / 2.0) * a * t * 2$

$$
V=a^{*} t
$$

Write(*, "(1x,'Time =',1x,f10.3,/,'Distance $=$ ', $1 x, f 10.3, /, ~ ' V e l o c i t y ~ i s ', ~ f 10.3) ") ~ t, ~ S, ~ V ~$ End program Vel_Distance

